
1

Building a Web Based EIS for Data Analysis
Ed Confer, KGC Programming Solutions, Potomac Falls, VA

Abstract

Web based reporting has enhanced the ability of management to
interface with data in a point and click architecture. In order to
build an effective front-end, a structural framework design must
be built on flexibility and efficiency. The data to be extracted
should be stored as a collection table, to ensure that timely and
accurate data can be extracted from a single source. The
program should be written so that any number of parameters can
be filtered in the extraction. The Web and SAS Software can
deliver this reporting capability to management. Utilizing SAS
Software as the data extraction tool, the user can select any
number of data conditions based on reporting requirements. The
data can be presented in multiple methods, such as a graph
depicting data points over time, or a tabular report based on
summary data. The reporting tool can be designed to provide to
the user a variety of reporting capabilities and data filters.
Although the focus of this paper is the SAS Software code used
in developing this reporting tool, other components of the
development of a Web based query tool such as Java Script and
HTML will also be discussed.

Introduction

Today there are many ways to extract and analyze data
contained in a data warehouse. The successful businesses
realize the need to leverage the technical expertise of the IT
department with the data needs of the business area to construct
a robust decision making process.

This paper presents to the SAS programmer a methodology for
constructing a reporting system that is both flexible and
efficient. Through a series of examples I will illustrate how to:
1) extract data from data warehouse using PROC SQL; 2) design
a filter frame with JavaScript and HTML; 3) create PROC SQL
macros to create “where=” clauses from URL name resolutions;
4) output SAS/GRAPH to the Web.

Background

ABC Junkyard Cars Decision Management is involved with loss
minimization in the leasing of its best wrecks. A study
completed at the end of 2000 fiscal year showed that a certain
brand of auto paid off much sooner relative to the population of
all autos leased. Decision Management determined that the best
way to test the validity of a predictive model of this adverse
behavior was to monitor timely data. However, it also surmised
that other forces would possibly contribute to the higher attrition
rates, and therefore other trending data would be useful. In the
past, the DM staff would have asked DSS (Decision Support) to
produce a report on an ad-hoc basis, but now with Web

reporting, reports can be viewed with a click of the mouse. The
DM team made a choice; it opted for a Web-based EIS.

The first step taken by the team was to clarify the business needs
and to communicate to the IT department the business rules.
Once the programmers and the business unit reached an
agreement on the specifications and actions needed, the work of
developing a Collection Table based on the business rules could
be initiated. To accomplish this, the IT department selected
SAS PROC SQL.

Using SAS PROC SQL to Extract Data From
the Data Warehouse

The Data Warehouse that contains ABC Junkyard data resides in
a number of Oracle tables. To satisfy the business needs of the
EIS, data needs to be extracted from multiple sources, and
several tables will need to be joined together to create the data
for the collection table. Additionally, based on the business
rules, a number of attributes will require transformation to a new
target variable. First, select the data based on those cases where
a lease was terminated within a certain time period. This can be
accomplished using SAS PROC SQL. Example 1 is an
illustration of data extraction utilizing SQL The example below
is an illustration of SAS code that reads in the data contained in
temporary Data Set named TERMS created at the top of the
example. The TERMS data contains ACCOUNT, the year the
lease terminated, the value of the auto at termination and the
balance of the lease agreement.

Example 1.

%let begin=2000; /* Set Parameters */
%let end =2003;

data terms;
infile cards;
input account $ termyear value bal flag $ rate;
cards;
123 2001 1300 4000 N 10
456 2001 2000 1090 N 5
567 2002 5000 1023 N 11
888 2003 2090 6700 N 12
199 2002 1300 1200 N 13
444 2002 3500 1700 N 6
177 2001 2700 1050 N 7
222 2003 5000 2310 N 9
333 2002 4002 1930 N 11
101 2001 5000 3000 N 12
202 2003 1340 1500 N 13
112 2001 2000 4000 N 6
116 2003 2333 3301 N 5
587 2002 1415 1110 N 4
988 2002 1011 1270 N 4
184 2002 1550 2200 N 6

2

445 2002 3510 1160 N 7
561 2003 1119 1100 N 7
232 2001 5505 2220 N 4
343 2002 9551 1910 N 4
161 2001 5021 5000 N 6
239 2003 4610 6021 N 7;
run;

proc sql;
create table terms as
 select * from (
 select distinct
 account as account
 ,termyear as termyear
 ,value as value
 ,bal as balance
 ,rate as rate
 from
 terms
 where termyear
 between &begin and &end
 and flag <> 'Y');
quit;

The code above in Example 1 will create a SAS Data Set in the
Work Directory named TERMS. This represents to ABC the
leasing agreements that were terminated between 2000 and
2003. This will be the BASE population. Please note that for
simplification purposes, the PROC SQL code above illustrates
data extraction from a SAS Data Set; it does not represent the
Pass-thru method for connecting to Oracle.

The next step in the program is to extract the TRANSACTION
record for all Terminations, which describes the type of
termination of the lease agreement, [B Bankruptcy or P for
Payoff]. For Payoffs, the TRANSTYPE attribute is broken out
by CA, cash, MO, Money Order and CK for check. The
Bankruptcy codes contain NA for Not Applicable. In Example 2
below the TRANS table is combined with the TERM table, and
with the where clause, only those transactions with a type “P”
will be extracted.

Example 2.

data trans;
infile cards;
input account $ type $ transtype $ flag $;
cards;
123 P CA N
456 P CA N
567 P MO N
888 P CK N
199 P CA N
444 P MO N
177 B NA N
222 B NA N
333 B NA N
101 B NA N
202 P CA N
112 P MO N
116 P CK N
587 P CA N

988 P CA N
184 P CK N
445 B NA N
561 B NA N
232 P CK N
343 P CK N
161 P MO N
239 B NA N
;
run;

proc sql;
create table newtrans as
 select * from (
 select distinct
 a.account as account
 ,b.transtype as transtype
 ,a.termyear as termyear
 ,a.value as value
 ,a.balance as balance
 ,a.rate as rate
 from
 terms a inner join trans b
 on
 a.account = b.account
 where
 b.type = 'P' and b.flag <> 'Y');
quit;

The desired data is extracted from two tables and is joined to
form part of the collection table. The last bit of data needed to
create useful data analytics is reference data, which is
information regarding each account. The table in Example 3
below contains the year, make and color of auto. This data
extract is then combined with the data produced in Example 2
above. At this point the collection table is ready for data
analytics.

Example 3.

data ref;
infile cards;
input account $ autoyear make $ color $;
cards;
123 1960 Ford Red
456 2000 Buick Blue
567 1965 Toyota Black
888 1995 Chrysler Red
199 1965 Ford Black
444 2001 Buick White
177 1965 Ford Black
222 1995 Honda Brown
333 1980 Pontiac Orange
101 1986 Ford Purple
202 1954 Honda Black
112 1956 Ford Blue
116 1989 Ford White
587 1994 Toyota Silver
988 1996 BMW Red
184 1995 Ford Yellow
445 1996 Buick Maroon
561 1995 Toyota Grey

3

232 1999 Honda White
343 1998 Pontiac Blue
161 1994 Ford Black
239 2001 Honda Brown
;
run;

proc sql;
create table collection as
 select * from (
 select distinct
 a.account as account
 ,a.transtype as transtype
 ,a.termyear as termyear
 ,a.value as value
 ,a.balance as balance
 ,a.rate as rate
 ,b.autoyear as autoyear
 ,b.make as make
 ,b.color as color
 from
 newtrans a inner join ref b
 on
 a.account = b.account);

Building the HTML Window and Filter
Criteria

Now that the DM team has the data in place, it can decide on the
means to filter out the data and to report on the analysis. The
team has decided to combine the tools of HTML and JavaScript
and to utilize the Web for its reporting.

Figure 1.

In Figure 1 above an Internet Browser displays the Filter page
for the Auto Leasing Terminations Analysis. It is from this
website that the DM team can select the criteria for its analysis.
The frame is constructed by using HTML and JavaScript
programming languages. The DM team can go to this website

on the Internet Browser and by using the mouse can select the
criteria to pull the data. This window above will be part of a
larger frame that will encompass a main window that is much
larger, where data output such as graphs and listings will go; and
a header window that will provide titles and navigation buttons.

In this example the DM team would like to select records with
the following criteria:

1. Autos Built in 1997,
2. Paid Off by CASH,
3. Make is Ford
4. Interest Rate between 6 and 6.9%.
5. Red and Black Colors

Figure 2 below shows the screen print of the way the Internet
Browser would appear.

Figure 2.

By clicking on the selection criteria and thereby selecting the
filtering criteria, the URL address will display and save the
characteristics of the data selection. For instance, by selecting
the value of 1997 for Lease Termination Date, the URL will
display TERM=1997 in the Internet Browser window.
Likewise, the URL will display “payment= CA” for Cash. This
is the code behind the Internet Browser window:

Example 4.
name="payment" multiple >
 <Option value="0" selected>All Payoffs</Option>
 <Option value="CA">- Cash </Option>
 <Option value="CK">- Check </Option>
 <Option value="MO">- Money Order</Option>
</select></P>

4

By designating the option ‘MULTIPLE’ in Example 4 above
JavaScript the URL will display multiple selections and the code
that extracts the data from the collection table must be
programmed to select each of the choices in the WHERE clause.
This will be covered in the next section.

The user could also select RED for the color, and select 2000 as
the Model Year. Additionally, if the Make of the auto was being
analyzed, the user could select Ford, or Pontiac or any other
listed in the scroll bar. The number of combinations of the data
from the collection table is limited only by the business needs
and the flexibility of the program that filters the data from the
collection table.

Once the selection is finalized the user submits the code to the
SAS Broker. SAS reads the variables on the URL and creates
SAS Macro variables that are then used in the SAS PROC SQL
extract from the collection table. For example, based on the
criteria above, YEAR would resolve to “1997” (see Example 7),
PAYMENT would resolve to “CA” (see Example 4), MAKE
would resolve to “1” (see Example 5), RATE would resolve to
“5” (see Example 8), and COLOR would resolve to “1” and “7”
(see Example 6).

Example 5.
name="make" multiple>
 <Option Value=0 Selected>All</Option>
 <Option Value=1>Ford </Option>
 <Option Value=2>Honda </Option>
 .
 .
 <Option Value=9>BMW </Option>
</select></P>

Example 6.
name=”color” multiple>
 <Option value="0" Selected>All</Option>
 <Option value="1">RED </Option>
 .
 .
 <Option value="7">BLACK </Option>
 <Option value="8">GREY </Option>
</select></P>

Example 7.
name=”year” multiple>
 <Option value="0" Selected>All Years</Option>
 <Option value="1960">1960 </Option>
 <Option value="1961">1961 </Option>
 .
 .
 <Option value="2002">2002 </Option>
</select></P>

Example 8.
name=”rate”>
 <Option value="0" Selected>All</Option>
 <Option value="1">Under 3% </Option>
 <Option value="2">3.0 to 3.9% </Option>
 <Option value="3">4.0 to 4.9% </Option>
 <Option value="4">5.0 to 5.9% </Option>

 <Option value="5">6.0 to 6.9% </Option>
 .
 .
 <Option value="13">Above 13.9%</Option>
</select></P>

In each of the examples above {examples 4 thru 8}, the default
selection is set to all. This means that when the user opens the
Web application each of these scroll bars will be highlighted
with “All”. Therefore in the SQL extract in the WHERE
condition, all records will be selected. The next phase in the
development of the EIS is to code the SAS program so that the
MACRO values from the URL will be resolved correctly in the
extract.

Designing an Automated SQL Where Clause
Based on MACRO Values

One of the keys in developing a program to read the selection
criteria from EIS into the WHERE clause in the PROC SQL
data pull is to create an automated selection criteria from the
macro variables generated on the URL. An obstacle to
overcome in reading the URL is the occurrence of multiple
selections within a filter category. SAS creates an additional
value in the URL for those filter categories that contain
MULTIPLE capabilities for selection. In order to recognize
multiple selections and to designate the appropriate number of
selections it is necessary to develop a SAS MACRO to
accommodate all possible values.

Once the HTML submit button is selected SAS bundles all of
the information from the JavaScript and sends the parameters as
well as the SAS Program name to the Application Dispatcher.
Based on the criteria 1-5 above, more than one COLOR variable
value is selected. The Dispatcher then is going to send the
following to the SAS application/program:

 COLOR0 2
 COLOR 1
 COLOR1 1
 COLOR2 7

The COLOR0 value designates the number of selections made
in the COLOR scroll box. COLOR1 and COLOR2 values
indicate the values for RED and BLACK respectively. The SAS
program that reads this data will create SAS MACRO variables
that resolve to these values. Example 9 below illustrates the
code to accomplish this.

Example 9.
%macro color;

 %let comma = %str();
 %local i;
 %global color color0;
 %if %superq(color) ne %str() %then %do;
 %if %superq(color0) eq %str() %then %let color0=1;
 %let color1 = %superq(color);
 %put Nbr Colors is &color0;
 %do i = 1 %to %superq(color0);

5

%let xcolor=&xcolor&comma
%str(%'%superq(%qtrim(color&i))%');
 %let comma = %str(,);
 %end;
 %end;

%mend color;

The SAS MACRO variable XCOLOR will resolve to a character
string:

 “1”,”7”

Each of the parameters that allow for multiple selections will
require the code indicated above in Example 9. Once each of
the macros are called it will be possible to create the WHERE
condition for the SAS PROC SQL data pull.

Example 10.
%if &color=0 %then %do;
 %let cond4 = %str();
%end;
%else %do;
 %let cond4 = %str(yr_orign in (%unquote(%str(&xcolor))));
%end;

In Example 10 above the MACRO creates two SAS MACRO
variables, COND4 and TITLE4. The first “if” condition in the
MACRO will assign a null value to MACRO variable COND4,
which means that in the WHERE clause in the SQL query this
condition will not appear. In other words, if all colors are
selected in the EIS then there is no requirement to specify a
color in the conditions statement. By default, the SQL query
will select all records, regardless of the value contained in the
attribute COLOR. Since the selection designated above is RED
and BLACK the first “IF” condition is FALSE, and the next
“IF” condition is executed. The MACRO variable COND4 will
contain the values of “1” and “7”, and will resolve to:

 “1”,”7”.

In order to complete the building of the conditional statement,
each of the selection variables contained in the EIS will require
code as in Example 10 above. Once all of the MACRO
variables are created, it will be a matter of creating MACRO
variables to insert into the WHERE statement; these are the
“AND” ‘s that need to be placed between each condition.

First, set the number of EIS variables (less 1) for “AND” and
“OUT” to null:

%let and1 = %str();
%let out1 = %str();
%let and2 = %str();
%let out2 = %str();
%let and3 = %str();
%let out3 = %str();
%let and4 = %str();
%let out4 = %str();
%let and5 = %str();
%let out5 = %str();

The reason to select number of variables less 1 is because this
construction of “AND” will be placed between each condition,
there will not be an “AND” necessary after the last possible
condition.

Example 11 below is code to construct the “AND” statements
and to complete the WHERE clause.

Example 11.

%do %while(%superq(out1) = %str());
 %if %superq(cond1) ne %str() %then %do;
 %if %superq(cond2) ne %str() %then %do;
 %let and1 = and;
 %let out1 = 9;
 %end;
 %else
 %if %superq(cond3) ne %str() %then %do;
 %let and1 = and;
 %let out1 = 9;
 %end;
 %else
 %if %superq(cond4) ne %str() %then %do;
 %let and1 = and;
 %let out1 = 9;
 %end;
 %else
 %if %superq(cond5) ne %str() %then %do;
 %let and1 = and;
 %let out1 = 9;
 %end;
 %else
 %if %superq(cond6) ne %str() %then %do;
 %let and1 = and;
 %let out1 = 9;
 %end;
 %else
 %if %superq(cond7) ne %str() %then %do;
 %let and1 = and;
 %let out1 = 9;
 %end;
 %else
 %if %superq(cond8) ne %str() %then %do;
 %let and1 = and;
 %let out1 = 9;
 %end;
 %else
 %if %superq(cond9) ne %str() %then %do;
 %let and1 = and;
 %let out1 = 9;
 %end;
 %else %do;
 %let and1 = %str();
 %let out1 = 9;
 %end;
 %end;
 %else %do;
 %let and1 = %str();
 %let out1 = 9;
 %end;
%end;

6

%do %while(%superq(out2) = %str());
 %if %superq(cond2) ne %str() %then %do;
 %if %superq(cond3) ne %str() %then %do;
 %let and2 = and;
 %let out2 = 9;
 %end;
 %else
 %if %superq(cond4) ne %str() %then %do;
 %let and2 = and;
 %let out2 = 9;
 %end;
 %else
 %if %superq(cond5) ne %str() %then %do;
 %let and2 = and;
 %let out2 = 9;
 %end;
 %else
 %if %superq(cond6) ne %str() %then %do;
 %let and2 = and;
 %let out2 = 9;
 %end;
 %else
 %if %superq(cond7) ne %str() %then %do;
 %let and2 = and;
 %let out2 = 9;
 %end;
 %else
 %if %superq(cond8) ne %str() %then %do;
 %let and2 = and;
 %let out2 = 9;
 %end;
 %else
 %if %superq(cond9) ne %str() %then %do;
 %let and2 = and;
 %let out2 = 9;
 %end;
 %else %do;
 %let and2 = %str();
 %let out2 = 9;
 %end;
 %end;
 %else %do;
 %let and2 = %str();
 %let out2 = 9;
 %end;
%end;

This code includes the construction up to condition 2, but for the
entire program it will be necessary to complete for each of the
six conditions. The value of “9” for the MACRO variable OUT
could be any value other than NULL, in order to break out of the
DO LOOP. Once the program loops through each of the DO
LOOPS, the SQL extract can be processed. In example 12
below, the data is queried from the collection table.

Example 12.
create table extract as
 select *
 from connection to DW
 select * from
 some ORACLE table
 where &cond1 &and1 &cond2 &and2 &cond3 &and3

 &cond4 &and4 &cond5 &and5 &cond6);
quit;

The SAS Data Set EXTRACT is created based on the
parameters designated in the EIS. Now that the data is
available, there are a number of presentation possibilities to
consider. SAS offers a wide variety of output including
TABULATE, SAS/GRAPH, PDF and HTML to name a few.
Using ODS the user can direct the output to the WEB, and for
the purposes of the EIS here, that would be the next step.

Sending Graphs and Table Output to the
WEB

For a simple PIE Chart see Example 12 below.

Example 12.
proc gchart data=extract;
 pie make / sumvar= balance;
run;
title ‘Selections’;
quit;

Figure 13.

Each slice value in Figure 13 above is equal to the sum of the
balance remaining on the lease agreement at the termination of
the lease date. Because FORD has a very large balance relative
to the other Makes or auto, the slice width is larger.

To send this output to the FRAME within the EIS , Example 13
is used for illustration.

7

Example 13.
ods listing close;
 ATTRIBUTES =("codebase"="graphdirectory")
 PARAMETERS=("drilldownmode"="local"
"colorscheme"="financial");

insert SAS/GRAPH code here …..

goptions reset=all
 device =java
 gsfname=gout
 gsfmode=replace;

ods html close;
ods listing;

Conclusion

An EIS application on the WEB provides an opportunity for data
analytics and decision making that is far superior to running ad-
hoc reports on an as-needed basis. The flexibility that SAS
provides for generating output enables a number of different
presentations to be displayed in the EIS output frame. It is
important however to maximize the efficiency of the system by
constructing WHERE clauses that extract only the appropriate
data based on the user interface. With a well thought out plan,
and a solid sense of the business a successful EIS can be built
very easily.

References

Miron, Thomas. (1995), The How-To Book for SAS/GRAPH
Software, Cary, NC; SAS Institute Inc.

SAS, SAS/GRAPH are registered trademarks of SAS Institute
Inc. in the USA and other countries. Indicates USA
Registration.

Contact Information

Ed Confer
KGC Programming Solutions
P.O. Box 650283
Potomac Falls, VA 20165

Email: EdConfer1031@Yahoo.com

